Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Oral Biosci ; 66(1): 68-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266705

RESUMO

OBJECTIVES: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-ß1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-ß1, on osteogenic differentiation in MSCs. METHODS: UE7T-13 cells were treated with TGF-ß1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS: Co-treatment with TGF-ß1 and CTGF resulted in the suppression of TGF-ß1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-ß1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-ß1. Osteopontin expression was observed only after TGF-ß1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-ß1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS: CTGF enhances TGF-ß1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.


Assuntos
Células-Tronco Mesenquimais , Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
2.
Int Ophthalmol ; 43(9): 3297-3307, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37160587

RESUMO

PURPOSE: To investigate the effect of endothelin-1 (ET-1) in excessive accumulation of extracellular matrix (ECM) of the trabecular meshwork (TM) and its role in intraocular pressure (IOP) regulation. METHODS: Cultured human TM cells (HTMCs) were treated with ET-1, ET-1 + ETA receptor (ETAR) antagonist BQ123, ET-1 + ETB receptor (ETBR) antagonist BQ788. The expressions of fibronectin (FN) and collagen type IV (Col IV) were evaluated by western blotting and immunofluorescence. A time course effect of ET-1 on the transcription level of connective tissue growth factor (CTGF) was investigated by qRT-PCR. Next, the transcription level of CTGF was downregulated by using antisense oligodeoxynucleotide sequence. Then HTMCs were treated with ET-1, and the expression levels of FN and Col IV were evaluated by western blotting. In addition, by using an ex-vivo model of cultured anterior eye segment, we explored the effect of ET-1 on IOP changes and the expressions of FN and Col IV. RESULTS: In cultured HTMCs, the expressions of FN and Col IV were significantly increased after ET-1 treatment, which were blocked by the pretreatment of ETAR antagonist BQ123, rather than ETBR antagonist BQ788. Besides, the CTGF mRNA level increased significantly and reached a peak after 48 h of ET-1 treatment. However, the effect of ET-1 on increasing the expressions of FN and Col IV in HTMCs could be inhibited by the downregulation of CTGF. In an ex-vivo model, IOP increased significantly after ET-1 administration, which could be blocked by BQ123 but not by BQ788. Furthermore, elevated expressions of FN and Col IV in TM were observed after ET-1 perfusion, and could be inhibited by BQ123 pretreatment. CONCLUSION: Excessive ET-1 in aqueous humor could lead to the abnormal accumulation of FN and Col IV in TM via the ETA-CTGF pathway, thereby increasing IOP.


Assuntos
Glaucoma de Ângulo Aberto , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Pressão Intraocular , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Matriz Extracelular/metabolismo , Glaucoma de Ângulo Aberto/metabolismo
3.
Reproduction ; 165(1): 113-122, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36288122

RESUMO

In brief: Although the pro-invasive role of epidermal growth factor (EGF) has been reported in human trophoblast cells, the underlying mechanism remains largely unexplored. This work reveals that EGF-induced downregulation of connective tissue growth factor (CTGF) mediates the EGF-stimulated human trophoblast cell invasion. Abstract: During the development of the placenta, trophoblast cell invasion must be carefully regulated. Although EGF has been shown to promote trophoblast cell invasion, the underlying mechanism remains largely undetermined. Our previous study using RNA-sequencing (RNA-seq) has identified that kisspeptin-1 is a downstream target of EGF in a human trophoblast cell line, HTR-8/SVneo, and mediates EGF-stimulated cell invasion. In the present study, after re-analysis of our previous RNA-seq data, we found that the CTGF was also downregulated in response to the EGF treatment. The inhibitory effects of EGF on CTGF mRNA and protein levels were confirmed in HTR-8/SVneo cells by reverse transcription quantitative real-time PCR and western blot, respectively. Treatment with EGF activated both PI3K/AKT and ERK1/2 signaling pathways. Using pharmacological inhibitors, our results showed that EGFR-mediated activation of PI3K/AKT signaling was required for the EGF-downregulated CTGF mRNA and protein levels. Matrigel-coated transwell invasion assays demonstrated that EGF treatment stimulated cell invasion. In addition, the invasiveness of HTR-8/SVneo cells was suppressed by treatment with recombinant human CTGF. By contrast, siRNA-mediated knockdown of CTGF increased cell invasion. Notably, the EGF-promoted HTR-8/SVneo cell invasion was attenuated by co-treatment with CTGF. This study provides important insights into the molecular mechanisms mediating EGF-stimulated human trophoblast cell invasion and increases the understanding of the biological functions of CTGF in the human placenta.


Assuntos
Fator de Crescimento Epidérmico , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , RNA Mensageiro/metabolismo , Movimento Celular
4.
J Gastroenterol ; 58(1): 53-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301364

RESUMO

BACKGROUND: To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS: First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS: A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-ß, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS: Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.


Assuntos
Inibidores da Aromatase , Cirrose Hepática , Camundongos , Animais , Letrozol/efeitos adversos , Inibidores da Aromatase/efeitos adversos , Ácido Retinoico 4 Hidroxilase/metabolismo , Cirrose Hepática/patologia , Fígado/patologia , Hepatócitos/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Preparações Farmacêuticas/metabolismo , Tretinoína/farmacologia
5.
Methods Mol Biol ; 2582: 269-280, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36370356

RESUMO

Human-induced pluripotent stem cells (hiPSCs) are useful tools to examine human neuronal maturation processes. In this chapter, we describe the maturation of human neuronal precursor cells derived from hiPSCs by cellular communication network family member 2, also known as connective tissue growth factor. We describe the (1) preparation of feeder cells for undifferentiated culture of hiPSCs, (2) undifferentiated culture of hiPSCs, (3) induction of neuronal precursor cells from hiPSCs, (4) maturation of neuronal precursor cells from hiPSCs, (5) immunofluorescent staining of neuronal cells from hiPSCs, and (6) immunofluorescence analysis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Células Alimentadoras , Neurônios , Comunicação Celular , Diferenciação Celular
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(9): 1303-1308, 2022 Sep 20.
Artigo em Chinês | MEDLINE | ID: mdl-36210702

RESUMO

OBJECTIVE: To investigate the regulatory role of miRNA-26a in vascular smooth muscle cell (VSMC) calcification by regulating connective tissue growth factor (CTGF). METHODS: Rat thoracic aorta VSMCs (A7r5 cells) with induced calcification were treated with AR234960 agonist or transfected with miR-26a mimic, or with both treatments. Alizarin red staining was used to determine calcium deposition, and phosphatase (ALP) activity in the cells was measured. The mRNA and protein expressions of miR-26a, OPG, OPN, BMP-2 and collagen Ⅱ were detected using qPCR and Western blotting. The binding of miR-26a to CTGF was verified using dual luciferase reporter gene assay. RESULTS: After induced calcification, A7r5 cells showed gradually decreased miR-26a expression (P < 0.05) and progressively increased CTGF expression (P < 0.05) with the extension of induction time. Treatment of the cells with AR234960 obviously increased calcification in the cells, while transfection with miR-26a mimic significantly reduced cell calcification. The calcifying cells showed significantly increased ALP activity and expressions of OPN, BMP-2 and collagen Ⅱ (P < 0.05) and lowered OPG expression (P < 0.05), and treatment with AR234960 did not produce obvious effects on these changes (P > 0.05). Transfection with miR-26a mimic resulted in significantly decreased ALP activity and expressions OPN, BMP-2 and collagen Ⅱ expression (P < 0.05) and increased OPG expression (P < 0.05) in the calcifying cells. These effects of miR-26a mimic was significantly attenuated by treatment of the cells with AR234960 (P < 0.05). The result of luciferase reporter gene assay confirmed the binding of miR-26a to CTGF. CONCLUSION: miRNA-26a can effectively alleviate vascular calcification by lowering the level of CTGF, reducing ALP activity and the expressions of OPN, BMP-2 and collagen Ⅱ, and increasing the expression of OPG.


Assuntos
MicroRNAs , Calcificação Vascular , Animais , Cálcio/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , MicroRNAs/metabolismo , Músculo Liso Vascular , Miócitos de Músculo Liso , Monoéster Fosfórico Hidrolases/metabolismo , Monoéster Fosfórico Hidrolases/farmacologia , RNA Mensageiro/metabolismo , Ratos , Sulfonas
7.
Anal Cell Pathol (Amst) ; 2022: 5942379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226237

RESUMO

Purpose: The YAP signaling pathway is altered and implicated as oncogenic in human mammary cancers. However, roles of YAP signaling that regulate the breast tumor angiogenesis have remained elusive. Tumor angiogenesis is coordinated by the activation of both cancer cells and vascular endothelial cells. Whether the YAP signaling pathway can regulate the intercellular interaction between cancer cells and endothelial cells is essentially unknown. Methods: The effects of YAP on tumor angiogenesis, migration, and proliferation of vascular endothelial cells were evaluated in vitro. Expression of proteins and phosphorylating proteins involved in YAP, G13-RhoA, and PI3K/Akt signaling pathways was evaluated using the Western blotting, immunofluorescence staining, and immunohistochemistry analysis. In addition, the effects of YAP on breast cancer angiogenesis were evaluated in vivo by tumor xenograft mice. Results: We showed here that conditioned media from YAP overexpressed breast cancer cells (CM-YAP+) could promote angiogenesis, accompanied by increased tube formation, migration, and proliferation of human umbilical vein endothelial cells (HUVECs). Down regulation of YAP in HUVECs reversed CM-YAP+ induced angiogenesis. CM-YAP+ time-dependently activated YAP in HUVECs by dephosphorylating YAP and increasing nuclear translocation. We also identified that both G13-RhoA and PI3K/Akt signaling pathway were necessary for CM-YAP+ induced activation of YAP. Besides, connective tissue growth factor (CTGF) and angiopoietin-2 (ANG-2) acted as down-stream of YAP in HUVECs to promote angiogenesis. In addition, subcutaneous tumors nude mice model demonstrated that tumors overexpressed YAP revealed more neovascularization in vivo. Conclusion: YAP-YAP interaction between breast cancer cells and endothelial cells could promote tumor angiogenesis, supporting that YAP is a potential marker and target for developing novel therapeutic strategies against breast cancer.


Assuntos
Angiopoietina-2 , Neoplasias da Mama , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição/metabolismo , Angiopoietina-2/metabolismo , Angiopoietina-2/farmacologia , Animais , Neoplasias da Mama/patologia , Movimento Celular , Proliferação de Células , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Meios de Cultivo Condicionados/farmacologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Nus , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
J Periodontal Res ; 57(6): 1219-1226, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36205057

RESUMO

OBJECTIVE AND BACKGROUND: Gingival overgrowth (GO) is a common side effect of some drugs such as anticonvulsants, immunosuppressant, and calcium channel blockers. Among them, the antiepileptic agent phenytoin is the most common agent related to this condition due to its high incidence. Transforming growth factor ß (TGFß) importantly contributes to the pathogenesis of GO. Connective tissue growth factor (CTGF or CCN2) is a key mediator of tissue fibrosis and is positively associated with the degree of fibrosis in GO. We previously showed that Src, c-jun N-terminal kinase, and Smad3 mediate TGFß1-induced CCN2 protein expression in human gingival fibroblasts (HGFs). This study investigates whether phenytoin can induce CCN2 synthesis through activated latent TGFß in HGFs and its mechanisms. METHODS: CCN2 synthesis, latent TGFß1 activation, and cellular reactive oxygen species (ROS) generation in HGFs were studied using western blot analysis, a TGFß1 Emax® ImmunoAssay System, and 2',7'-dichlorodihydrofluorescein diacetate (an oxidation-sensitive fluorescent probe), respectively. RESULTS: Phenytoin significantly stimulated CCN2 synthesis, latent TGFß1 activation, and ROS generation in HGFs. Addition of an TGFß-neutralizing antibody, TGFß receptor kinase inhibitor SB431542, and Smad3 inhibitor SIS3 completely inhibited phenytoin-induced CCN2 synthesis. General antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor diphenylene iodonium, and specific NOX4 inhibitor plumbagin almost completely suppressed phenytoin-induced total cellular ROS and latent TGFß1 activation. Curcumin dose-dependently decreased phenytoin-induced TGFß1 activation and CCN2 synthesis in HGFs. CONCLUSIONS: Our findings indicated that NOX4-derived ROS play pivotal roles in phenytoin-induced latent TGFß1 activation. Molecular targeting the phenytoin/NOX4/ROS/TGFß1 pathway may provide promising strategies for the prevention and treatment of GO. Curcumin-inhibited phenytoin-induced CCN2 synthesis is caused by the suppression of latent TGFß1 activation.


Assuntos
Curcumina , Crescimento Excessivo da Gengiva , Humanos , Gengiva/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Curcumina/farmacologia , NADPH Oxidase 4/metabolismo , NADPH Oxidase 4/farmacologia , Fenitoína/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Fibroblastos , Fator de Crescimento Transformador beta1/metabolismo , Crescimento Excessivo da Gengiva/induzido quimicamente , Fibrose
9.
BMC Cardiovasc Disord ; 22(1): 97, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279096

RESUMO

PURPOSE: The aim of the present study was to investigate the efficacy of recombinant human endostatin (ES) (rh-ES) combined with radiation on rat cardiomyocyte apoptosis and the regulatory mechanism of transforming growth factor beta1 (TGF-ß1)/Sma and Mad-related protein 3 (Smad3)/connective tissue growth factor (CTGF) signaling. METHOD: The primary cardiomyocytes were isolated from neonatal Sprague-Dawley rats for culture in vitro and divided into blank control group (without treatment), 10 Gy radiation + siTGF-ß1 siRNA (gene silencing) group, ES + siTGF-ß1 siRNA group, and 10 Gy radiation + ES + siTGF-ß1 siRNA group. Methyl thiazolyl tetrazolium assay was used to calculate the half-maximal inhibitory concentration (IC50) of rh-ES on cardiomyocytes. Adenoviral vector was constructed for virus packaging to silence TGF-ß1 expression in cardiomyocytes. Quantitative real-time polymerase chain reaction and Western blot were carried out to analyze TGF-ß1, Smad2, Smad3 and CTGF expression at both gene and protein levels. Flow cytometry and electron microscope were used to examine cell apoptosis. RESULTS: ES had a dose-dependent inhibitory effect on the proliferation of primary rat cardiomyocytes. ES combined with radiotherapy significantly inhibited cardiomyocyte proliferation and promoted cell apoptosis (P < 0.01). The gene and protein expression of TGF-ß1, Smad2, Smad3 and CTGF were significantly up-regulated in primary cardiomyocytes transfected with TGF-ß1 gene (P < 0.05). CONCLUSION: The combination therapy with rh-ES and radiation can promote cardiomyocyte apoptosis and aggravate myocardial cell damage via TGF-ß1/Smad3/CTGF signaling pathway.


Assuntos
Miócitos Cardíacos , Fator de Crescimento Transformador beta1 , Animais , Apoptose , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Endostatinas/genética , Endostatinas/metabolismo , Endostatinas/farmacologia , Humanos , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad3/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
10.
J Orthop Res ; 40(12): 2754-2762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35212415

RESUMO

Intrasynovial flexor tendon lacerations of the hand are clinically problematic, typically requiring operative repair and extensive rehabilitation. The small-molecule connective tissue growth factor (CTGF) mimics, oxotremorine M (Oxo-M) and 4-PPBP maleate (4-PPBP), have been shown to improve tendon healing in small animal models by stimulating the expansion and differentiation of perivascular CD146+ cells. To enhance intrasynovial flexor tendon healing, small-molecule CTGF mimics were delivered to repaired canine flexor tendons via porous sutures. In vitro studies demonstrated that Oxo-M and 4-PPBP retained their bioactivity and could be released from porous sutures in a sustained manner. However, in vivo delivery of the CTGF mimics did not improve intrasynovial tendon healing. Histologic analyses and expression of tenogenic, extracellular matrix, inflammation, and remodeling genes showed similar outcomes in treated and untreated repairs across two time points. Although in vitro experiments revealed that CTGF mimics stimulated robust responses in extrasynovial tendon cells, there was no response in intrasynovial tendon cells, explaining the lack of in vivo effects. The results of the current study indicate that therapeutic strategies for tendon repair must carefully consider the environment and cellular makeup of the particular tendon for improving the healing response.


Assuntos
Fator de Crescimento do Tecido Conjuntivo , Tendões , Cães , Animais , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Suturas , Diferenciação Celular
11.
Carbohydr Polym ; 268: 118256, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34127227

RESUMO

Inspired by the natural electrostatic interaction of cationic growth factors with anionic sulfated glycosaminoglycans in the extracellular matrix, we developed electrospun poly(hydroxybutyrate)/gelatin (PG) fibers conjugated with anionic sulfated carboxymethylcellulose (sCMC) to enable growth factor immobilization via electrostatic interaction for tissue engineering. The fibrous scaffold bound cationic molecules, was cytocompatible and exhibited a remarkable morphological and functional stability. Transforming growth factor-ß1 immobilized on the sCMC conjugated fibers was retained for at least 4 weeks with negligible release (3%). Immobilized fibroblast growth factor-2 and connective tissue growth factor were bioactive and induced proliferation and fibrogenic differentiation of infrapatellar fat pad derived mesenchymal stem cells respectively with efficiency similar to or better than free growth factors. Taken together, our studies demonstrate that sCMC conjugated PG fibers can immobilize and retain function of cationic growth factors and hence show potential for use in various tissue engineering applications.


Assuntos
Carboximetilcelulose Sódica/análogos & derivados , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Sistemas de Liberação de Medicamentos , Fator 2 de Crescimento de Fibroblastos/farmacologia , Tecidos Suporte/química , Fator de Crescimento Transformador beta1/farmacologia , Animais , Sequência de Carboidratos , Carboximetilcelulose Sódica/metabolismo , Carboximetilcelulose Sódica/toxicidade , Bovinos , Gelatina/química , Gelatina/metabolismo , Gelatina/toxicidade , Cabras , Proteínas Imobilizadas/farmacologia , Células-Tronco Mesenquimais , Muramidase/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Poliésteres/toxicidade , Soroalbumina Bovina/metabolismo , Eletricidade Estática , Engenharia Tecidual/métodos
12.
Sci Rep ; 11(1): 2368, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504916

RESUMO

In vertebrates, new bone formation via intramembranous osteogenesis is a critical biological event for development, remodeling, and fracture healing of bones. Chemotaxis of osteoblast lineage cells is an essential cellular process in new bone formation. Connective tissue growth factor (CTGF) is known to exert chemotactic properties on various cells; however, details of CTGF function in the chemotaxis of osteoblast lineage cells and underlying molecular biological mechanisms have not been clarified. The aim of the present study was to evaluate the chemotactic properties of CTGF and its underlying mechanisms during active bone formation through intramembranous osteogenesis. In our mouse tensile force-induced bone formation model, preosteoblasts were aggregated at the osteogenic front of calvarial bones. CTGF was expressed at the osteogenic front, and functional inhibition of CTGF using a neutralizing antibody suppressed the aggregation of preosteoblasts. In vitro experiments using µ-slide chemotaxis chambers showed that a gradient of CTGF induced chemotaxis of preosteoblastic MC3T3-E1 cells, while a neutralizing integrin α5 antibody and a Ras inhibitor inhibited the CTGF-induced chemotaxis of MC3T3-E1 cells. These findings suggest that the CTGF-integrin α5-Ras axis is an essential molecular mechanism to promote chemotaxis of preosteoblasts during new bone formation through intramembranous osteogenesis.


Assuntos
Quimiotaxia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Integrina alfa5/genética , Osteoblastos/metabolismo , Osteogênese/fisiologia , Resistência à Tração , Proteínas ras/genética , Células 3T3 , Animais , Biomarcadores , Osso e Ossos , Diferenciação Celular , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/genética , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Imunofluorescência , Imuno-Histoquímica , Integrina alfa5/metabolismo , Camundongos , Osteoblastos/citologia , Transdução de Sinais , Proteínas ras/metabolismo
13.
Lancet Respir Med ; 8(1): 25-33, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31575509

RESUMO

BACKGROUND: Connective tissue growth factor (CTGF) is a secreted glycoprotein that has a central role in the process of fibrosis. This study was designed to assess the safety, tolerability, and efficacy of pamrevlumab (FG-3019), a fully recombinant human monoclonal antibody against CTGF, in idiopathic pulmonary fibrosis. The aim was to establish whether pamrevlumab could slow, stop, or reverse progression of idiopathic pulmonary fibrosis. METHODS: The phase 2, randomised, double-blind, placebo-controlled PRAISE trial was done at 39 medical centres in seven countries (Australia, Bulgaria, Canada, India, New Zealand, South Africa, and the USA). Patients with idiopathic pulmonary fibrosis and percentage of predicted forced vital capacity (FVC) of 55% or greater were enrolled and randomly assigned (1:1) by use of interactive responsive technology to intravenous infusion of pamrevlumab 30 mg/kg or placebo every 3 weeks over 48 weeks (16 infusions). The primary efficacy outcome was change from baseline in percentage of predicted FVC at week 48. Disease progression (defined as a decline from baseline in percentage of predicted FVC of ≥10%, or death) at week 48 was a key secondary efficacy outcome. All patients in the pamrevlumab group received at least one dose of the study drug and were analysed for safety. Two patients in the placebo group were excluded from the intention-to-treat population for the efficacy analyses because of enrolment error. This trial is registered with ClinicalTrials.gov, NCT01890265. FINDINGS: Between Aug 17, 2013, and July 21, 2017, 103 patients were randomly assigned (50 to pamrevlumab and 53 to placebo). Pamrevlumab reduced the decline in percentage of predicted FVC by 60·3% at week 48 (mean change from baseline -2·9% with pamrevlumab vs -7·2% with placebo; between-group difference 4·3% [95% CI 0·4-8·3]; p=0·033). The proportion of patients with disease progression was lower in the pamrevlumab group than in the placebo group at week 48 (10·0% vs 31·4%; p=0·013). Pamrevlumab was well tolerated, with a safety profile similar to that of placebo. Treatment-emergent serious adverse events were observed in 12 (24%) patients in the pamrevlumab group and eight (15%) in the placebo group, with three patients on pamrevlumab and seven on placebo discontinuing treatment. Of the three (6%) deaths in the pamrevlumab group and six (11%) in the placebo group, none was considered treatment related. INTERPRETATION: Pamrevlumab attenuated progression of idiopathic pulmonary fibrosis and was well tolerated. Now in phase 3 development, pamrevlumab shows promise as a novel, safe, and effective treatment for idiopathic pulmonary fibrosis. FUNDING: FibroGen.


Assuntos
Anticorpos Monoclonais Humanizados/administração & dosagem , Fator de Crescimento do Tecido Conjuntivo/administração & dosagem , Fibrose Pulmonar Idiopática/tratamento farmacológico , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Fator de Crescimento do Tecido Conjuntivo/efeitos adversos , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Capacidade Vital/efeitos dos fármacos
14.
J Biomed Mater Res B Appl Biomater ; 108(1): 48-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888115

RESUMO

Surgical outcome following pelvic organ prolapse (POP) repair needs improvement. We suggest a new approach based on a tissue-engineering strategy. In vivo, the regenerative potential of an electrospun biodegradable polycaprolactone (PCL) mesh was studied. Six different biodegradable PCL meshes were evaluated in a full-thickness abdominal wall defect model in 84 rats. The rats were assigned into three groups: (1) hollow fiber PCL meshes delivering two dosages of basic fibroblast growth factor (bFGF), (2) solid fiber PCL meshes with and without bFGF, and (3) solid fiber PCL meshes delivering connective tissue growth factor (CTGF) and rat mesenchymal stem cells (rMSC). After 8 and 24 weeks, we performed a histological evaluation, quantitative analysis of protein content, and the gene expression of collagen-I and collagen-III, and an assessment of the biomechanical properties of the explanted meshes. Multiple complications were observed except from the solid PCL-CTGF mesh delivering rMSC. Hollow PCL meshes were completely degraded after 24 weeks resulting in herniation of the mesh area, whereas the solid fiber meshes were intact and provided biomechanical reinforcement to the weakened abdominal wall. The solid PCL-CTGF mesh delivering rMSC demonstrated improved biomechanical properties after 8 and 24 weeks compared to muscle fascia. These meshes enhanced biomechanical and biochemical properties, demonstrating a great potential of combining tissue engineering with stem cells as a new therapeutic strategy for POP repair. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:48-55, 2020.


Assuntos
Implantes Absorvíveis , Células Imobilizadas , Fator de Crescimento do Tecido Conjuntivo , Fator 2 de Crescimento de Fibroblastos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Nanofibras/química , Prolapso de Órgão Pélvico , Animais , Células Imobilizadas/metabolismo , Células Imobilizadas/transplante , Fator de Crescimento do Tecido Conjuntivo/química , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Feminino , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/farmacologia , Diafragma da Pelve/cirurgia , Prolapso de Órgão Pélvico/metabolismo , Prolapso de Órgão Pélvico/patologia , Prolapso de Órgão Pélvico/terapia , Poliésteres , Ratos , Ratos Wistar
15.
Int J Nanomedicine ; 14: 8573-8588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802870

RESUMO

PURPOSE: Impairment of wound healing is a major issue in type-2 diabetes that often causes chronic infections, eventually leading to limb and/or organ amputation. Connective tissue growth factor (CTGF) is a signaling molecule with several roles in tissue repair and regeneration including promoting cell adhesion, cell migration, cell proliferation and angiogenesis. Incorporation of CTGF in a biodegradable core-shell fiber to facilitate its sustained release is a novel approach to promote angiogenesis, cell migration and facilitate wound healing. In this paper, we report the development of CTGF encapsulated electrospun dual porous PLA-PVA core-shell fiber based membranes for diabetic wound healing applications. METHODS: The membranes were fabricated by a core-shell electrospinning technique. CTGF was entrapped within the PVA core which was coated by a thin layer of PLA. The developed membranes were characterized by techniques such as Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD) analysis. In vitro cell culture studies using fibroblasts, keratinocytes and endothelial cells were performed to understand the effect of CTGF loaded membranes on cell proliferation, cell viability and cell migration. A chicken chorioallantoic membrane (CAM) assay was performed to determine the angiogenic potential of the membranes. RESULTS: Results showed that the developed membranes were highly porous in morphology with secondary pore formation on the surface of individual fibers. In vitro cell culture studies demonstrated that CTGF loaded core-shell membranes improved cell viability, cell proliferation and cell migration. A sustained release of CTGF from the core-shell fibers was observed for an extended time period. Moreover, the CAM assay showed that core-shell membranes incorporated with CTGF can enhance angiogenesis. CONCLUSION: Owing to the excellent cell proliferation, migration and angiogenic potential of CTGF loaded core-shell PLA-PVA fibrous membranes, they can be used as an excellent wound dressing membrane for treating diabetic wounds and other chronic ulcers.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Diabetes Mellitus/patologia , Membranas Artificiais , Cicatrização/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Células NIH 3T3 , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Poliésteres/química , Álcool de Polivinil/química , Porosidade , Pele/efeitos dos fármacos , Resistência à Tração , Tecidos Suporte/química
17.
Sci Rep ; 9(1): 10913, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358778

RESUMO

In this study, we investigated the effect of CCN2 (cellular communication network factor 2), previously termed connective tissue growth factor, deposited in bone matrix on osteoclastogenesis and osteoblast differentiation. To mimic the bone matrix environment, osteocytic MLO-Y4 cells had been embedded in collagen-gel with recombinant CCN2 (rCCN2), and mouse macrophage-like RAW264.7 cells were inoculated on the gel and treated with receptor activator of NF-κB ligand (RANKL). NFATc1 and cathepsin K (CTSK) productions were more increased in the combination of RAW264.7 and MLO-Y4 cells treated with rCCN2 than the combination without rCCN2. Next, we isolated an osteocyte-enriched population of cells and osteoclast progenitor cells from wild type and tamoxifen-inducible Ccn2-deficient (KO) mice and performed similar analysis. NFATc1 and CTSK productions were decreased in the KO osteocyte-enriched population at 6 months after the tamoxifen injection, regardless of the origin of the osteoclast progenitor cells. Interestingly, CTSK production was rather increased in KO osteocytes at 1 year after the injection. Finally, the combination of osteoblastic MC3T3-E1 and MLO-Y4 cells in rCCN2-containing bone matrix revealed the up-regulation of osteoblastic marker genes. These findings suggest that CCN2 supplied by osteocytes regulates both osteoclastogenesis and osteoblast differentiation.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/farmacologia , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese , Animais , Diferenciação Celular , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Feminino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células RAW 264.7
18.
Sci Rep ; 9(1): 10864, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350444

RESUMO

The infrapatellar fat pad (IFP) serves as a reservoir of Mesenchymal Stem Cells (MSC), and with adjacent synovium plays key roles in joint disease including the production of Substance P (SP) affecting local inflammatory responses and transmitting nociceptive signals. Here, we interrogate human IFP-derived MSC (IFP-MSC) reaction to inflammatory and pro-fibrotic environments (cell priming by TNFα/IFNγ and TNFα/IFNγ/CTGF exposure respectively), compared with bone marrow-derived MSC (BM-MSC). Naïve IFP-MSC exhibit increased clonogenicity and chondrogenic potential compared with BM-MSC. Primed cells experienced dramatic phenotypic changes, including a sharp increase in CD10, upregulation of key immunomodulatory transcripts, and secreted growth factors/cytokines affecting key pathways (IL-10, TNF-α, MAPK, Ras and PI3K-Akt). Naïve, and more so primed MSC (both) induced SP degradation in vitro, reproduced with their supernatants and abrogated with thiorphan, a CD10 inhibitor. These findings were reproduced in vivo in a rat model of acute synovitis, where transiently engrafted human IFP-MSC induced local SP reduction. Functionally, primed IFP-MSC demonstrated sustained antagonism of activated human peripheral blood mononuclear cells (PBMC) proliferation, significantly outperforming a declining dose-dependent effect with naïve cohorts. Collectively, our in vitro and in vivo data supports cell priming as a way to enhance the immunoregulatory properties of IFP-MSC, which selectively engraft in areas of active synovitis/IFP fibrosis inducing SP degradation, resulting in a cell-based product alternative to BM-MSC to potentially treat degenerative/inflammatory joint diseases.


Assuntos
Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Neprilisina/metabolismo , Fenótipo , Proteólise/efeitos dos fármacos , Substância P/metabolismo , Sinovite/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Adulto , Animais , Células da Medula Óssea/metabolismo , Células Cultivadas , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrose , Voluntários Saudáveis , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interferon gama/farmacologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Sinovite/induzido quimicamente , Fator de Necrose Tumoral alfa/farmacologia
19.
J Orthop Res ; 37(3): 574-582, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30756417

RESUMO

Intrasynovial tendons are paucicellular and hypovascular, resulting in a poor response to injury. Surgical repair of ruptured or lacerated tendons often lead to complications such as adhesions, repair site gapping, and repair site rupture. Adipose-derived stem cells (ASCs) have shown promise for enhancing tendon repair, as they have the capacity to differentiate into tendon fibroblasts and augment the healing response. Furthermore, connective tissue growth factor (CTGF) has been shown to promote tendon regeneration via the stimulation of endogenous tendon stem cells. Here, we evaluated the potential of CTGF to promote tenogenic differentiation of ASCs in vitro. Gene and protein expression, cell proliferation, and FAK and ERK1/2 signaling were assessed. CTGF increased tenogenic genes in mouse ASCs in a dose- and time-dependent manner. Western blot and immunostaining analyses demonstrated increases in tenogenic protein expression in CTGF-treated ASCs at all timepoints studied. CTGF increased ASC proliferation in a dose-dependent manner. CTGF induced phosphorylation of ERK1/2 within 5 min and FAK within 15 min; both signals persisted for 120 min. Blocking FAK and ERK1/2 pathways by selective inhibitors SCH772984 and PF573228, respectively, attenuated the CTGF-induced tenogenic differentiation and proliferation of ASCs. These results suggest that CTGF induces tenogenic differentiation of ASCs via the FAK and ERK1/2 pathway. Statement of clinical significance: Although prior research has led to advances in tendon operative techniques and rehabilitation methods, clinical outcomes after tendon repair remain variable, with high rates of repair site gapping or rupture. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Tenócitos , Tecido Adiposo/citologia , Animais , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Avaliação Pré-Clínica de Medicamentos , Sistema de Sinalização das MAP Quinases , Camundongos , Cultura Primária de Células , Traumatismos dos Tendões/terapia
20.
Cells Tissues Organs ; 208(1-2): 76-88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32092752

RESUMO

Low back pain is experienced by a large number of people in western countries and may be caused and influenced by many different pathologies and psychosocial factors including disc degeneration. Disc degeneration involves the increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) in the disc environment, which leads to the loss of extracellular matrix (ECM) and the viability of the native disc cells (DCs). Treatment approaches using growth factors and cell therapy have been proposed due to the compelling results that growth factors and mesenchymal stem cells (MSCs) can influence the degenerated discs. The aim of this study was to investigate the effects of conditioned media (CM) from human MSCs (hMSCs) and connective tissue growth factor (CTGF) and TGF-ß on disc cells, and hMSCs isolated from patients with degenerative discs and severe low back pain. The aim was also to examine the constituents of CM in order to study the peptides that could bring about intervertebral disc (IVD) regeneration. DCs and hMSC pellets (approx.. 200,000 cells) were cultured and stimulated with hMSC-derived CM or CTGF and TGF-ß over 28 days. The effects of CM and CTGF on DCs and hMSCs were assessed via cell viability, proteoglycan production, the expression of ECM proteins, and chondrogenesis in 3D pellet culture. To identify the constituents of CM, CM was analyzed with tandem mass spectrometry. The findings indicate that CM enhanced the cellular viability and ECM production of DCs while CTGF and the control exhibited nonsignificant differences. The same was observed in the hMSC group. Mass spectrometry analysis of CM identified >700 peptides, 129 of which showed a relative abundance of ≥2 (CTGF among them). The results suggest that CM holds potential to counter the progression of disc degeneration, likely resulting from the combination of all the substances released by the hMSCs. The soluble factors released belong to different peptide families. The precise mechanism underlying the regenerative effect needs to be investigated further, prior to incorporating peptides in the development of new treatment strategies for low back pain that is potentially caused by IVD degeneration.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Disco Intervertebral , Células-Tronco Mesenquimais/metabolismo , Adulto , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condrogênese/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Feminino , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/efeitos dos fármacos , Degeneração do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Dor Lombar/etiologia , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células/métodos , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...